If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+25t-20=0
a = 4.9; b = 25; c = -20;
Δ = b2-4ac
Δ = 252-4·4.9·(-20)
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-3\sqrt{113}}{2*4.9}=\frac{-25-3\sqrt{113}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+3\sqrt{113}}{2*4.9}=\frac{-25+3\sqrt{113}}{9.8} $
| w/2+13=17 | | f+3/10=4 | | 6x-19°+3x+32°=180° | | Y*(y+6)=4 | | -7(2-7k)=-112 | | 7x+3=4x+7 | | 6.4=6.8m | | Y(y+6)=4 | | (2x+3)(x-1)+2x(x-1)=0 | | x-1.63=2.25 | | 1/2+u=2 | | 7p-70=4p-7 | | 12+ u = 2 | | 3^-x=0.7 | | X-3=(10x-54)1/2 | | 6p+6=42 | | 2(4m-2)+4-5=10m-2+5-20 | | w/18=26 | | (20-2x)(21-2x)=210 | | 4a²-11a=3 | | 6x+4x-3x=49 | | y/27=28 | | 49x^2-7=18 | | 0=2w^2+5w-42 | | 2(x-6)^3/2=54 | | 3y=6y+4 | | 7+v/5=10 | | 0=2w^2-5w-33 | | 1/2x+8=1/4x+11 | | 3−(5x−26)=6(x−3) | | 0=2w^2+w-28 | | 13/11=y/4 |